
Journal of Global Optimization 22: 233–261, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

233

Enhancing RLT relaxations via a new class of
semidefinite cuts

HANIF D. SHERALI∗ and BARBARA M. P. FRATICELLI�
Department of Industrial and Systems Engineering, 250 New Engineering Building, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061, USA ∗Corresponding author
(E-mail: hanifs@vt.edu)

Abstract. In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique
(RLT) based relaxations for solving nonconvex programming problems by importing concepts from
semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an
RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is re-
placed by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the
positive semidefinite stipulation is re-written to develop a semi-infinite linear programming repres-
entation of the problem, and an approach is developed that can be implemented using traditional
optimization software. Specifically, the infinite set of constraints is relaxed, and members of this
set are generated as needed via a separation routine in polynomial time. In essence, this process
yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of
RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the
underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing
a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in
C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along
with several implementation strategies. Several of the most promising lower bounding strategies
have been implemented within a branch-and-bound framework. Computational results indicate that
the cutting plane algorithm provides a significant tightening of the lower bound obtained by using
RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound
significantly reduces the effort required to obtain globally optimal solutions.

Key words: Reformulation-Linearization Technique (RLT), Semidefinite programming (SDP), Semi-
definite cuts, Valid inequalities, Nonconvex quadratic programming.

1. Introduction

The Reformulation-Linearization Technique (RLT) is a unifying approach for solv-
ing discrete and continuous nonconvex optimization problems (see Sherali and
Adams, 1999), for a comprehensive exposition). The RLT strategy is to suitably
multiply appropriate constraints by nonnegative bound-factors, constraint-factors,
or simply variables in a reformulation phase, and then to replace the products of
original variables by new variables in order to derive a higher-dimensional lower
bounding linear programming (LP) relaxation for the original problem. This RLT

� This material is based upon research supported by the National Science Foundation under Grant
Number DMI-9812047.

234 SHERALI AND FRATICELLI

process can actually generate a hierarchy of tighter relaxations, depending on the
types of factor products employed in the reformulation phase. In practice, however,
the lowest-level RLT relaxation (as dictated by the nature of the terms in the ori-
ginal problem) is most frequently implemented in order to control the size of the
resulting relaxation, although higher-level relaxations have been successfully used
in certain special applications. For many classes of problems, such a lowest-level
RLT relaxation has proven effective in deriving tight lower bounds for the ori-
ginal problem. However, this observation is not a uniform experience, and even in
the aforementioned cases, the overall process can greatly benefit by incorporating
suitable general classes of additional RLT inequalities that serve to further tighten
the relaxation, without having to resort to higher-level representations. With this
motivation, we explore the generation of particular types of valid inequalities or
cutting planes that are in fact generalized RLT constraints derived via semidefinite
programming concepts. We call this class of valid inequalities semidefinite cuts.
For some other classes of effective RLT cuts developed for the special case of
quadratic polynomial programs, we refer the reader to Audet et al. (2000).

Semidefinite programming (SDP) offers a related relaxation strategy to RLT for
solving certain types of nonconvex programming problems. Semidefinite programs
are similar to LPs, except that the vector of variables is replaced by a matrix of
appropriate variables, a special product operation is defined in lieu of the usual
matrix–vector operations, and the matrix of variables is restricted to be positive
semidefinite (PSD), in contrast with the nonnegativity constraints on the variables
in linear programming. SDP has been receiving increasing attention from the math-
ematical programming community since its inception over the past 5–10 years. Part
of the reason for its popularity, as pointed out by Vandenbergh and Boyd (1996), is
that SDP unifies several areas of mathematical programming (including linear and
quadratic programming) from a theoretical point of view. Active set methods (sim-
ilar to the simplex method in LP) were originally employed to solve SDP problems,
but more recently, as shown by Alizadeh (1995), many interior point methods for
solving linear programs can be directly modified and used to solve semidefinite
programs in polynomial time. For a detailed overview of SDP, see Vandenbergh
and Boyd (1996), or Alizadeh (1995). For articles that address theoretical results
as well as various specific applications pertaining to SDP, see also: Wolkowicz et
al. (2000), Todd (1998), Bertsimas and Ye (1998), Ramana and Pardalos (1996),
Ramana and Goldman (1995), and Goemans and Williamson (1995).

More recently, there has been an impetus of research related to reformulating
and solving SDPs as ordinary nonlinear programs. Vanderbei and Benson (2000)
propose a smooth, convex, finite nonlinear programming representation of a given
positive semidefinite constraint X � 0, by noting that a symmetric matrix X is
PSD if and only if it can be factored as X = LDLT , where L is a unit lower
triangular matrix, and D is a diagonal nonnegative matrix. Denoting dj (X), j =
1, ..., n, as the diagonal elements of D for a given n × n symmetric matrix X,
Vanderbei and Benson show that each dj (X) is a concave function of the elements

A NEW CLASS OF SEMIDEFINITE CUTS 235

ofX, and moreover, is twice continuously differentiable on the set of PSD matrices.
Accordingly, they replace X � 0 by the nonlinear, smooth constraints dj (X) ≥ 0
for j = 1, ..., n, and develop a specialized interior-point algorithm for solving
the underlying semidefinite program. Burer and Monteiro (1998) consider linear
semidefinite programs in the standard form to

minimize {C ·X : Ai · X = bi for i = 1, ..., m, X � 0},
where C and Ai, i = 1, ..., m are symmetric n × n matrices, and where for any
conformable square matrices A = [Aij] and B = [Bij], the dot product A · B is
defined as the trace of AT B, i.e., A ·B = ∑

i

∑
j AijBij . Also, here and throughout

this paper, X � 0 denotes that X is symmetric and positive semidefinite. Burer
and Monteiro show that this problem can be solved as a nonlinear program in
which X is replaced by a low-rank factorization RRT , where R is an n× r matrix,
with r taken as �√2m�. An augmented Lagrangian approach is then proposed to
solve this resulting problem, using a limited-memory BFGS scheme for the inner-
loop minimization process. However, the authors note that several local minima
might exist, and offer no theoretical proof of convergence, although encouraging
empirical results are presented.

Shor (1998) develops an alternative nondifferentiable optimization approach
to semidefinite programming based on incorporating the nonsmooth convex con-
straint that restricts the smallest eigenvalue of X to be nonnegative. Given a sym-
metric n × n matrix X, if we denote the n real eigenvalues of X arranged in
nondecreasing order by λj (X), j = 1, ..., n, then X � 0 is equivalent to the
condition that λ1(X) ≥ 0. Moreover, if we denote αj ≡ αj(X), j = 1, ..., n, as the
set of linearly independent normalized eigenvectors corresponding to λj (X), j =
1, ..., n, then noting that λj (X) = (αj)T Xαj ∀ j = 1, ..., n, we have that
X � 0 ⇐⇒ λj (X) ≥ 0 for j = 1, ..., n ⇐⇒ (αj)T Xαj ≥ 0 for j = 1, ..., n.
It is interesting to note that as a function of symmetric matrices X, λ1(X) is a
concave, but nondifferentiable, function (see Shor (1998), for example), although
as demonstrated by Vanderbei and Benson (2000), the remaining eigenvalue func-
tions λj (X) for j = 2, ..., n, do not necessarily enjoy this concavity property.
Furthermore, by the Raleigh-Ritz formula (which can be readily verified via the
normalized eigen-basis diagonalization process), we have that

λ1(X) = min
‖α‖=1

(αTXα).

Observe that as a function of X, λ1 is hereby characterized as the minimum of a
family of linear functions, and is therefore concave with a set of subgradients that
can be characterized in terms of the normed eigenvectors α∗ associated with λ1(X),
where λ1(X) = α∗TXα∗ for each such α∗. Accordingly, Shor (1998) incorporates
the nonsmooth convex constraint λ1(X) ≥ 0 in the model formulation, in lieu of
X � 0, and proposes a nondifferentiable optimization strategy.

In this paper, we integrate the concepts of semidefinite programming and RLT to
develop a class of semidefinite cuts that can be used to augment the RLT

236 SHERALI AND FRATICELLI

relaxation for any problem (discrete or continuous, linear or nonlinear) to which
the latter technique is applicable. Given an RLT relaxation for any such problem,
we show that we can further enhance this relaxation by incorporating an infinite
class of particular RLT constraints that are based on semidefinite relationships.
Rather than solve the resulting semi-infinite program, which in itself would require
a specialized solution approach, we adopt the strategy of generating suitable mem-
bers from the infinite constraint set as needed through a cutting plane or separation
procedure. This separation routine is executed in polynomial time, thereby making
the cut generation process efficient. The resulting set of cuts, which are in effect
a form of special RLT constraints, are called semidefinite cuts. In essence, these
cuts constitute a relaxation of the semidefinite constraint on the matrix of (second-
order) variables. Moreover, each relaxation in this sequential process is a linear
program whose solution can be updated using standard mathematical programming
software. In addition, an upper bound can be computed by initializing a local search
procedure with the solution obtained for the final relaxation. These bounds can be
embedded within a branch-and-bound framework to determine a global optimum
to the original problem.

Note that this concept of generating cutting planes based on semidefinite re-
strictions can be used to augment any RLT relaxation for discrete or continuous
nonconvex programs, even if the overall relaxation contains sets of (nonlinear)
convex constraints as in Sherali and Tuncbilek (1997). For example, Sherali and
Wang (2001) have recently proposed a global optimization approach for solving
general nonconvex factorable programs by integrating a polynomial approxima-
tion with an RLT scheme. In this context, our proposed approach can be applied
identically by augmenting the simple nonnegativity and symmetry restrictions on
the even-ordered RLT variables by a stronger positive semidefinite constraint, and
then generating valid inequalities to tighten the relaxation in a manner similar to
that exposed in the sequel.

As a point of illustration of this general concept, we will consider a specific
example of the class of problems involving the minimization of a nonconvex quad-
ratic objective function over a simplex (denoted QP below). This problem is in-
teresting in its own right, and has been extensively studied by Nowak (1998a,b,
1999). It arises, for instance, in the context of finding a maximal weighted clique
in an undirected graph.

QP : Minimize
∑
i

∑
j

Cij xixj (1.1a)

subject to eT x = 1 (1.1b)

x ≥ 0, (1.1c)

where x ∈ Rn and e is a vector of n ones. Although Problem QP is NP-Hard,
it has a simple structure that makes it convenient to illustrate the essence of our
approach, and extensions to more general problems are readily evident.

A NEW CLASS OF SEMIDEFINITE CUTS 237

The first-level RLT relaxation RLT-1 (see Sherali and Tuncbilek, 1992) for
Problem QP would multiply (1.1b) with each variable xi , for i = 1, ..., n, and
then substitute a nonnegative variable Xij for each term xixj in the problem, where
Xij ≡ Xji ∀i, j = 1, ..., n. To write this resulting problem in a specific manner
that exposes connections with semidefinite programming and motivates our de-
velopment, define X ≡ [Xij] to be an n × n (symmetric) matrix that represents
the linearization of xxT under the foregoing RLT substitution (i.e., X ≡ [xxT]L,
where in general, [·]L represents the standard linearization operation of RLT; in
the present context, this involves the substitution of Xij for the product term xixj).
Then, we can write the level-one RLT relaxation for QP in the form

RLT − 1(QP) : minimize
∑
i

∑
j

CijXij (1.2a)

subject to eT x = 1 (1.2b)

Xe = x (1.2c)

x ≥ 0, X ≥ 0 and symmetric. (1.2d)

Nowak (1998a,b, 1999) has proposed various SDP approaches for solving Prob-
lem QP. To derive a suitable semidefinite relaxation for QP, Nowak first employs
the particular RLT constructs of multiplying the constraints xi ≥ 0 and xj ≥ 0
pairwise and squaring the constraint eT x = 1, to derive the following quadratically
constrained quadratic program (QQP).

QQP : Minimize
∑
i

∑
j

Cij xixj

subject to (eT x)2 = 1

xixj ≥ 0, ∀1 ≤ i, j ≤ n

x ≥ 0.

By substituting X = xxT , he then obtains a semidefinite relaxation for this repres-
entation as given by

SDP(QQP) : minimize C · X (1.3a)

subject to (eeT) · X = 1 (1.3b)

X ≥ 0 (1.3c)

X � 0 (1.3d)

where C = [Cij]. Nowak next constructs a convex quadratic function, w(x) =
xTWx, such that W ≤ C and w(x) approximates C ·X = xT Cx. The matrix W is
found by solving a separate semidefinite program. This produces an approximation
for the convex envelope of the objective function, and the optimal solution to this
convex program is used to provide an estimate for the global minimum of Problem

238 SHERALI AND FRATICELLI

QP. Nowak has developed several lower bounding schemes for Problem QP, each
based upon solving a different SDP problem to find W .

To illustrate our more general methodology, rather than focusing on such a spe-
cialized approach to Problem QP, we present in Section 2 an alternative semidef-
inite relaxation for Problem QP that is more closely associated with the usual RLT
process, and which in fact yields a tighter relaxation than (1.3). This SDP relaxation
is then shown to be equivalent to a suitable semi-infinite RLT relaxation. Based
on this derivation, we develop a cutting plane strategy in Section 3. This strategy
sequentially augments the first-level relaxation RLT-1(QP) with cutting planes that
are automatically generated from the constraints in the semi-infinite representa-
tion using a special polynomial-time separation procedure. Several cut generation
mechanisms are explored in this context. Thereafter, in Section 4, we demonstrate
that potentially stronger classes of such cutting planes can be generated in a like-
wise fashion with comparable effort by simply replacing the semidefinite constraint
X � 0 by the restriction X � xxT , i.e.,

[
X x

xT 1

]
� 0.

Computational results for employing cutting planes based on both these types
of semidefinite constraints are provided in Section 5. Finally, Section 6 presents
conclusions and suggestions for future research, including the extension of the
proposed relaxation enhancement procedure to higher-level representations.

2. An alternative semidefinite relaxation of QP and its semi-infinite
representation

There are several ways to construct a semidefinite relaxation for QP. One such for-
mulation, suggested by Nowak, was presented above in (1.3). Alternatively, rather
than squaring the simplex constraint, we can instead multiply it (on the right) by
xT as one would in an RLT approach, and use the substitution X = xxT . Since X
is symmetric, this yields the constraint Xe = x, which we append to the original
problem. Relaxing X = xxT to X � 0, we obtain the following semidefinite relax-
ation of QP. Note that from (2.4b,c), we get (eeT) ·X ≡ eT Xe = eT x = 1, or that
(1.3b) is implied. Hence, formulation (2.4) potentially yields a tighter relaxation of
QP than that given by (1.3).

SDP(QP) : Minimize C ·X (2.4a)

subject to eT x = 1 (2.4b)

Xe = x (2.4c)

x ≥ 0, X ≥ 0 (2.4d)

X � 0. (2.4e)

A NEW CLASS OF SEMIDEFINITE CUTS 239

We will now construct an equivalent semi-infinite linear programming restatement
of Problem SDP(QP). This will facilitate the derivation of valid inequalities to
augment the first-level RLT relaxation of Problem QP, given by (1.2). Consider the
following result.

PROPOSITION 1 The problem SDP(QP) given by (2.4) is equivalent to the semi-
infinite linear program (SILP(QP)) stated in (2.5) below.

SILP(QP) : Minimize
∑
i

∑
j

CijXij (2.5a)

subject to eT x = 1 (2.5b)

Xe = x (2.5c)

[(αT x)2]L ≥ 0, ∀α ∈ Rn � ‖α‖ = 1 (2.5d)

x ≥ 0, X ≥ 0 and symmetric. (2.5e)
Proof. By definition, X � 0 is equivalent to requiring that X is symmetric and

that αT Xα ≥ 0, ∀α ∈ Rn � ‖α‖ = 1, noting that any nonzero α ∈ Rn can be
made of unit length. But αTXα = [αT (xxT)α]L = [(αT x)(xT α)]L = [(αT x)2]L.
Hence (2.4e) is equivalent to requiring X to be symmetric and such that (2.5d)
holds true. This completes the proof. �

Proposition 1 reveals a connection between RLT and semidefinite relaxations.
Observe that (2.5a, b, c, and e) are respectively identical to (1.2a, b, c, and d) that
define the first-level RLT relaxation RLT-1(QP). The constraint set (2.5d) provides
a potential strengthening of SDP(QP) or SILP(QP) over RLT-1(QP). The first-level
RLT relaxation replaces the nonlinear substitution restriction X = xxT by simply
requiring X to be nonnegative and symmetric. On the other hand, the semidef-
inite relaxation also requires X to satisfy the positive semidefiniteness condition
associated with the identity X = xxT . But note that as explored in Sherali and
Tuncbilek (1997) and Audet et al. (2000), for example, aside from the minimal
RLT representation constraints stated in (1.2) in the present context, the first-level
RLT relaxation can optionally incorporate any other classes of linearized quadratic
implied constraints. In particular, enhancing RLT-1(QP) with such implied restric-
tions of the type (2.5d) yields the semidefinite relaxation SDP(QP) as a special
case. We therefore refer to the valid inequalities of the type (2.5d) as semidefinite
cuts (or SDP cuts).

REMARK 1. As in Section 1, if we denote αj ≡ αj(X), j = 1, ..., n, as the
set of linearly independent normalized eigenvectors of X, then X � 0 is equivalent
to the condition that (αj)T Xαj ≥ 0 for j = 1, ..., n. Hence, in the relationships
embodied in (2.5d), we could focus on just the α-vectors corresponding to such
eigenvectors of X, and generate violated members of these constraints in a relax-
ation framework based on detected negative eigenvalues. The Lanczos algorithm
could be used for efficiently finding such extremal eigenvalues for this purpose (see

240 SHERALI AND FRATICELLI

Paige (1972), for example). However, because of the complexity of this approach,
given that X is a variable in the problem, we will find it more convenient to de-
rive a (polynomial-time) separation mechanism for generating suitable members
of (2.5d) in a sequential fashion, based on an LU factorization concept for X. �

3. Cutting plane generation scheme

Rather than solve the semi-infinite program SILP(QP) directly, we adopt the fol-
lowing relaxation approach which leads to a cutting plane generation strategy that
can be applied in more general contexts. To begin with, we first solve SILP(QP)
with the constraints (2.5d) omitted. Note that this relaxation corresponds precisely
to the first-level RLT relaxation of QP as given by (1.2). Let us denote the resulting
solution to this problem as (x̂, X̂). If X̂ � 0, then X̂ solves Problem SILP(QP) (or
SDP(QP)) as well. Otherwise, the solution X̂ violates at least one of the constraints
(2.5d). The task now is to generate a suitable vector of unit length, α ∈ Rn, for
which the constraint αTXα ≥ 0 is not satisfied when X = X̂, to yield a cutting
plane of type (2.5d).

In essence, our solution recursively evaluates the entries of X̂ to determine
whether or not X̂ is indeed positive semidefinite. Toward this end, consider the
application of a superdiagonalization (or upper triangularization) process to the
symmetric matrix X̂ (see Bazaraa et al., 1993). In this process, proceeding in the
order i = 1, 2, ..., n, we continue to zero out the elements in the ith column under
the current ith diagonal element by performing elementary row operations using
the ith row, so long as the diagonal elements encountered remain positive. Starting
with G1 ≡ X̂ for i = 1, at the ith stage in this process, i ∈ {1, ..., n − 1}, suppose
that we have encountered all positive diagonal elements thus far, and that we are
examining the reduced submatrix Gi ∈ R(n−i+1)×(n−i+1) appearing in rows and
columns i, i + 1, ..., n. Let us view Gi in its partitioned form, where its first row
and column are explicitly displayed as follows

Gi ≡
[
Gi

11 (gi)T

gi G

]
, (3.6)

and consider the following result.

PROPOSITION 2 Given Gi as in (3.6), suppose that Gi
11 > 0 and define

Gi+1 = G − gi(gi)T

Gi
11

. (3.7)

ThenGi is PSD if and only ifGi+1 is PSD. Moreover, given any αi+1 ≡ (αi+1, ..., αn)
T ,

by selecting

αi = −(αi+1)T gi

Gi
11

,

A NEW CLASS OF SEMIDEFINITE CUTS 241

we have that (αi)TGiαi = (αi+1)T Gi+1αi+1 for

αi ≡
(

αi
αi+1

)
.

Proof. By simplifying terms, we have from (3.6) and (3.7) that

(αi)TGiαi = Gi
11(αi + (αi+1)T gi

Gi
11

)2 + (αi+1)TGi+1αi+1.

Clearly, if Gi+1 is PSD, then so is Gi . Conversely, if Gi is PSD, then noting that
by setting

αi ≡ −(αi+1)T gi

Gi
11

gives (αi)TGiαi = (αi+1)TGi+1αi+1, (3.8)

we have that Gi+1 is PSD. Moreover, in any case (3.8) holds true. This completes
the proof. �

Note that the first part of Proposition 2 is based on the superdiagonalization pro-
cedure for checking the positive semidefiniteness of X̂ (see Bazaraa et al., 1993).
The related latter part of the result asserts that if Gi is not PSD, then since Gi+1

must also not be PSD, we can seek an αi+1 such that (αi+1)TGi+1αi+1 < 0, and
accordingly, we will have found an αi , with its first component αi given by (3.8),
such that (αi)TGiαi < 0. We can repeat this process recursively until all compon-
ents of α are determined. Upon normalizing this α, we will have generated a valid
linear inequality of the form (2.5d) that is not satisfied for the current solution X̂.

Next, consider the situation addressed by the following result in which for some
stage i ∈ {1, ..., n − 1}, we encounter a submatrix Gi of the type (3.6) for which
Gi

11 = 0 and gi ≡ 0.

PROPOSITION 3 Given Gi as in (3.6), suppose that Gi
11 = 0 and that gi ≡ 0.

Then by letting

Gi+1 ≡ G and αi = 0, (3.9)

we have that Gi is PSD if and only if Gi+1 is PSD, and moreover,

(αi)TGiαi = (αi+1)TGi+1αi+1 where αi =
(
αi ≡ 0
αi+1

)
. (3.10)

Proof. Similar to the proof of Proposition 2. �
This result asserts again that if Gi+1 is not PSD and we find an αi+1 such that

(αi+1)TGi+1αi+1 < 0, then we can recursively recover an α via (3.8) and (3.10)
(according to whether the corresponding diagonal element is positive or zero, not-
ing the condition of Proposition 3 in the latter case), such that (2.5d) is violated.

242 SHERALI AND FRATICELLI

Now, let us consider two cases where for the first time, a situation other than the
foregoing types arises.

Case (i): Gi
11 < 0 in (3.6).

Suppose that in the foregoing diagonalization process, we encounter for the
first time a matrix Gi given by (3.6) having Gi

11 < 0. In this case, we can take
αi = (αi, ..., αn)

T = (1, 0, ..., 0). Then (αi)TGiαi = Gi
11 < 0, and we can

subsequently compute the full vector α inductively using (3.8) and (3.10).

Case (ii): Gi
11 = 0, but Gi

1j = Gi
j1 = θ �= 0 for some j ∈ {2, ..., n − i + 1} in

(3.6).
In this case, we know that Gi is not PSD and we can find an α for which

αT X̂α ≥ 0 is violated as follows. Specifically, consider αi to be of the form αi =
(αi, .., αn)

T = (αi, 0, , , .0, αi+j−1, 0, ..., 0)T . Let Gi
jj = φ, ξ = (αi, αi+j−1)

T ,
and

H =
[

0 θ

θ φ

]
.

We then have that (αi)TGiαi = ξTHξ , and if we can determine a ξ for which
ξTHξ < 0, we will have obtained an αi for which (αi)TGiαi < 0. By using (3.8)
and (3.10) recursively as before, we could thereby find an α for which αT X̂α < 0.
This α could then be normalized to produce a valid inequality of the form (2.5d)
that must be satisfied for all feasible solutions X. In order to determine such a
vector αi , consider the following result.

PROPOSITION 4 Let ξ = (αi, αi+j−1)
T and let

H =
[

0 θ

θ φ

]
,

where θ �= 0. Then ξTHξ is minimized, subject to ||ξ ||2 = 1, by selecting

αi = 1√
1 + λ2

θ2

and αi+j−1 = αiλ

θ
where λ = φ − √

φ2 + 4θ2

2
. (3.11)

Moreover, at the solution (3.11), ξTHξ ≡ λ < 0.
Proof. By the linear independence constraint qualification, the KKT necessary

optimality conditions (see Bazaraa et al., 1993) for the problem of minimizing
ξTHξ subject to ||ξ ||2 = 1 yield for some λ,

Hξ = ξλ, ||ξ ||2 = 1. (3.12)

This implies that at any KKT solution, we have

ξTHξ = ξT ξλ = ||ξ ||2λ = λ. (3.13)

A NEW CLASS OF SEMIDEFINITE CUTS 243

From (3.12) and (3.13), it follows that the optimal objective value sought equals
the minimum eigenvalue λ of H, and the corresponding normalized eigenvector
yields the optimal solution ξ. To find the minimum eigenvalue for H, consider the
equation det (H −λI) = λ2 −φλ−θ2 = 0. Using the quadratic formula, we derive
the minimum eigenvalue of H as

λ = φ − √
φ2 + 4θ2

2
.

The corresponding eigenvector of H can be found via the system (H − λI)ξ = 0,
which gives αi+j−1 = λαi/θ . Since, ||ξ ||2 = α2

i + α2
i+j−1 = 1, we have αi =

1/
√

1 + λ2

θ2 , where the positive square-root for computing αi can be chosen without

loss of generality. Furthermore, from (3.13), λ = ξTHξ < 0 since X is not PSD.
This completes the proof. �

REMARK 2. Note that in case of alternative choices of elements pertaining to
Case (ii) for which Proposition 4 can be applied, we can select one that yields the
most negative value of λ. �

Example 1. To illustrate, consider the following example. Suppose that the cur-
rent solution X̂ is given as follows:

X̂ =

 0 0.15 0.15

0.15 0.2 0
0.15 0 0.2

 .

With i = 1, we have Gi
11 = 0 and Gi

1j = Gi
j1 �= 0 for j = 2 and j = 3, indicating

that there are two possible values of j that can generate a separating inequality.
With j = 2, we have Gi

12 = Gi
21 = 0.15. This yields ξ = (α1, α2)

T with θ = 0.15
and φ = 0.2 in the notation of Case (ii) above. From (3.11),

λ = 0.2 − √
0.22 + 4(0.15)2

2
= −0.08028,

α1 = 1√
1 + (−0.08028)2

0.152

= 0.8817

and

α2 = (−0.08028)(0.8817)

0.15
= −0.4719.

Hence, α = (0.8817,−0.4719, 0)T . Note that ||α|| = 1 and that

αT X̂α = ξTHξ = (0.8817,−0.4719)

(
0 0.15

0.15 0.2

)(
0.8817

−0.4719

)
= −0.08028,

244 SHERALI AND FRATICELLI

which is the value of λ. In a similar fashion, we can calculate the corresponding α

for j = 3 as α = (0.8817, 0,−0.4719)T , which also produces λ = −0.08028.
Thus, the procedure has found two possible choices of α for which αTXα ≡
[(αT x)2]L ≥ 0 is not satisfied for the current solution X̂. The corresponding
linearized constraints are given as

0.7774X11 − 0.8321X12 + 0.2226X22 ≥ 0

and 0.7774X11 − 0.8321X13 + 0.2226X33 ≥ 0.

Since both of these cuts produced the same value of λ, we could arbitrarily choose
either cut. �

The foregoing approach establishes an inductive polynomial-time process for
generating valid inequalities for the first-level RLT relaxation. Since each recursive
step of applying this process to Gi at iteration i is of complexity O(n2) and we
perform at most n such steps, the complexity of the overall separation routine is
O(n3). After obtaining an α for which αT X̂α < 0, ||α|| = 1, and generating the
corresponding inequality [(αT x)2]L ≥ 0, we can append this to the current RLT re-
laxation. This problem could then be re-solved to obtain a new solution (x̂, X̂), and
the procedure could be repeated until any of the following termination criteria is
realized: the solution X̂ for some relaxed problem turns out to be PSD, or some
maximum limit K1 on the number of LPs solved is attained, or the improvement
in the lower bound from one iteration to the next is lesser than a prescribed δ > 0
for some p consecutive iterations. Note that, as described in the sequel, we could
generate multiple cuts at each iteration. Hence, we also impose a limit, K2, on the
number of inequalities of type (2.5d) that are generated for any particular solution
X̂. (In our computations, we used K1 = 100,K2 = 100, δ = 0.001, and p = 3.) A
flowchart for this approximate truncated scheme for solving SILP(QP) by way of
augmenting RLT-1(QP) with the proposed SDP cuts is given in Figure 1.

Example 2. Suppose that the current solution X̂ is given as follows.

X̂ =

 0.04 0.08 0.2

0.08 0 0
0.2 0 0.4

 .

We can see that X̂ is not PSD, since X̂22 = 0 but X̂12 = X̂21 = 0.08. The procedure
of Figure 1 starts with i = 1,G1 = X̂, and examines G1

11 = X̂11. Since G1
11 > 0,

we store G1
11 = 0.04,

g1 =
(

0.08
0.2

)
,

A NEW CLASS OF SEMIDEFINITE CUTS 245

Figure 1. Flow-chart for the Fundamental SDP Cut Generation Procedure.

and we derive the reduced matrix G2 of Proposition 2 via (3.7) as

G2 =
[

0 0
0 0.4

]
−

(
0.08
0.2

)
(0.08 0.2)

0.04
=

[−0.16 −0.4
−0.4 −0.6

]
.

At i = 2, G2
11 = −0.16 is negative. Hence, we take α2 = (α2, α3)

T = (1, 0)T

which gives (α2)TG2α2 = −0.16. At the final step in Figure 1, with r = 1,
we compute α1 = −(α2, α3) · g1/G1

11 = −2 from Eq. (3.8). This yields α =
(−2, 1, 0)T with αT X̂α = −0.16. When we normalize α to (−2√

5
, 1√

5
, 0)T , we

246 SHERALI AND FRATICELLI

obtain αT X̂α = −0.032. The corresponding SDP cut is

[(αT x)2]L = 0.8X11 − 0.8X12 + 0.2X22 ≥ 0,

which is violated for X = X̂, since [(αT x)2]L ≡ αT X̂α = 0.8(0.04)−0.8(0.08)+
0.2(0) = −0.032. �

REMARK 3. In the cut generation process described above, we have assumed
that the matrix X̂ is scanned with respect to its ith diagonal element in the order
i = 1, ..., n, and that a single SDP cut is generated once it is revealed that X̂
is not PSD. There are several variations to this strategy that we could possibly
adopt. One such variation is a look-ahead feature for the cut generation process.
In this modification, when the matrix under consideration is Gi having dimension
n − i + 1, we scan the entire diagonal (Gi

qq for q = 1, ..., n − i + 1) to see if
any diagonal element is negative. If we find such a negative diagonal element, say
Gi

QQ > 0, we take αi+Q−1 = 1 and αp = 0,∀p ≥ i, p �= i + Q − 1. As before,
we use Eqs. (3.8) and (3.10) recursively to determine αp ∀p ≤ i − 1 (if i ≥ 2).
In a similar manner, we can look ahead for cases where there is a diagonal element
that equals zero, say, Gi

QQ = 0, but Gi
Qk �= 0 for some k ∈ {1, ..., n − i + 1}, and

generate a cut based on this revealed violation of positive semidefiniteness. Figures
2 and 3 provide detailed flow-charts of routines for implementing this look-ahead
feature. Here, we use ‘status = 0’ to indicate that we should continue to increment
i and look for additional cuts. Since it is only valid to increment i when either
Gi

11 > 0 or when Gi
1j = Gi

j1 = 0,∀j = 1, ..., n − i + 1, barring a further

permutation of rows and columns of X̂, we set ‘status = 1’ when either a Case (i)
or Case (ii) violation is detected with respect to the leading element Gi

11 of Gi .
As a second variant of this strategy, whenever the leading element of the current
reduced matrix Gi yields a Case (i) or Case (ii) violation, we generate the valid
cuts as above, but instead of exiting from the cut generation routine, we examine
if any of the other diagonal elements are positive. If so, we permute the rows and
columns of Gi to make the most positive diagonal element as the leading element,
and continue the cut generation process, taking care to record the appropriate order
of the permuted indices for generating future cuts. Let us refer to this technique
as the full permutation strategy. Since such a permutation strategy can consume
significant computational effort, a third variant is developed in order to decrease
computational effort while maintaining the benefits of permutation. In this vari-
ant, called the diagonal sort strategy, we perform an nlog(n) sort to arrange the
diagonal elements in nonincreasing order, and we continue to generate cuts until
we encounter a Case (i) or Case (ii) violation from the leading diagonal element.
A fourth variant that applies to all of the foregoing strategies adds multiple cuts
at each iteration, also using the look-ahead feature. Since there might be several
distinct choices of α for composing SDP cuts as revealed during the sequential
look-ahead process for the current solution X̂, we attempt to generate a bundle
of SDP cuts for each such X̂ in order to possibly reduce the computational time

A NEW CLASS OF SEMIDEFINITE CUTS 247

Figure 2. Flow-chart for the Look-Ahead SDP Cut Generation Procedure.

for the overall solution process. For all variants, we delete previously generated
inactive cuts at each iteration. (We also implement an efficient check to avoid the
generation of duplicated cuts.) In our experimental analysis, we will investigate
both the single and multiple cut implementations, using both the original matrix X̂
as well as an augmented matrix that will be considered in Section 4. �

Example 3. To illustrate the variants discussed in Remark 3, consider the matrix
X̂ from Example 2:

X̂ =

 0.04 0.08 0.2

0.08 0 0
0.2 0 0.4

 .

248 SHERALI AND FRATICELLI

Figure 3. Flow-chart for the SDP Cut Generation Subroutine Invoked by the Look-Ahead
Procedure of Figure 2.

With i = 1 and G1 = X̂, we can look-ahead and see that X̂22 = 0 but θ =
X̂21 = X̂12 = 0.08. Accordingly, we can derive a violated constraint at this point
itself, before incrementing i and examining G2. If we take ξ = (α2, α1)

T , θ =
X̂12 = X̂21 = 0.08, and φ = X̂11 = 0.04, we obtain from Proposition 4 that
α = (−0.6154, 0.7882, 0)T . The corresponding SDP cut is

0.3787X11 − 0.9701X12 + 0.6213X22 ≥ 0,

which is currently violated since αT X̂α = −0.0625. Now, since G1
11 > 0, we

could continue to increment i as before and generate the following SDP cut that
was obtained in Example 2:

0.8X11 − 0.8X12 + 0.2X22 ≥ 0,

A NEW CLASS OF SEMIDEFINITE CUTS 249

with the corresponding αT X̂α = −0.032. Observe that the SDP cut generated
by looking ahead had a violation nearly twice as large as the latter cut. In imple-
menting the single-cut option of Figure 2, we would only add the first cut since
we select the one cut that yields the largest violation. However, when using the
multiple cut implementation of Figure 2, we would impose both of the above cuts
before re-solving the current relaxation. �

REMARK 4. As a computational expedient, we have adopted the strategy to ter-
minate the above cut generation process when either the resulting solution matrix X̂
is PSD or when some practical stopping criterion is attained. In our computations,
as indicated above, we set limits on the maximum number of cuts and iterations,
as well as on the number of successive iterations performed while obtaining insuf-
ficient progress in tightening the lower bound. A question of interest that arises in
this context is whether such a process can be induced to attain the ideal termination
condition of X̂ being PSD, even in an infinite convergence sense, if the other prac-
tical stopping criteria are omitted. One approach for attaining such a theoretically
convergent process would be to impose a spacer step, whereby finitely often, a
vector α is generated uniformly distributed on the surface of a unit sphere in Rn.

Then, if X̂∗ is the limiting matrix for some convergent subsequence of solutions X̂
generated in an infinite process, we could not have the situation that there exists an
α for which αT X̂∗α < 0, because then there would exist an ε-neighborhood Nε(α)

about α for which αT X̂∗α < 0 ∀α ≡ Nε(α)∩{α : ‖α‖ = 1}. This would imply the
absence of having generated any α in the latter region which has a nonzero measure
on the surface of the unit sphere, a contradiction to the uniform distribution of the
generated values of α on the surface of this sphere. �

4. SDP cuts using an augmented matrix

The SDP cuts derived in Section 3 for enhancing the RLT-1 relaxation have been
developed by noting that the identity X = xxT implies the PSD restriction X � 0.
Another common tactic in semidefinite programming is to recognize that X = xxT

also implies the stronger condition that X � xxT (see Nowak (1998a,b, 1999), for
example). Note that X � xxT can be expressed as[

X x

xT 1

]
� 0.

From the viewpoint of RLT constraints (as per Proposition 1),[
X x

xT 1

]
� 0

translates to the class of SDP cuts[(
αT x + αn+1

)2
]
L

= αTXα + 2αn+1
(
αT x

) + α2
n+1 ≥ 0

250 SHERALI AND FRATICELLI

∀ (
αT , αn+1

) � ‖ (
αT , αn+1

) ‖ = 1.

In terms of the separation routine of the foregoing section, an identical procedure
can be implemented on the matrix XA, where

XA =
[
X x

xT 1

]
.

That is, given a solution (x̂, X̂), we can construct the matrix

X̂A =
[
X̂ x̂

x̂T 1

]

and apply the routine of Section 3 to the matrix X̂A in lieu of X̂.

Example 4. To illustrate the cut generation procedure using the foregoing aug-
mented matrix, consider X̂ as given in Example 1, and suppose that for all i, we
have x̂i = ∑

j X̂ij as required by (2.5c). This leads to the matrix X̂A as follows:

X̂A =

0 0.15 0.15 0.3
0.15 0.2 0 0.35
0.15 0 0.2 0.35
0.3 0.35 0.35 1

 .

Since the upper left portion of the matrix contains X̂, we can still derive the two
SDP cuts that were obtained in Example 1. However, with the additional row and
column of X̂A, we also have another possibility for generating an SDP cut inequal-
ity. With i = 1, we have X̂A

11 = 0, but X̂A
14 = X̂A

41 = 0.3 �= 0, and so we can
apply Proposition 4 with ξ = (α1, α4)

T , θ = 0.3, and φ = 1. From (3.11), we
get λ = [1 − √

12 + 4(0.3)2]/2 = −0.0831, α1 = 0.9637, and α4 = −0.2669.
Hence,(

α

αn+1

)
= (0.9637, 0, 0,−0.2669)T .

Note that

‖
(

α

αn+1

)
‖ = 1

and that(
α

αn+1

)T

X̂A

(
α

αn+1

)
= ξTHξ = −0.0831,

which is the value of λ. The corresponding SDP cut is given by

−0.5145x1 + 0.9287X11 ≥ −0.07125,

A NEW CLASS OF SEMIDEFINITE CUTS 251

which is currently violated, since we have −0.5145x̂1 + 0.9287X̂11 = −0.15435.
Thus, the procedure has found an

(
α

αn+1

)

for which
(

α

αn+1

)T

XA

(
α

αn+1

)
≡ [(αT x + αn+1)

2]L ≥ 0

is not satisfied for the current solution X̂A. Recall that both of the cuts derived
in Example 1 had αT X̂α = −0.0803; hence, examining the augmented matrix
has produced a cut that is violated to a greater extent than the former cuts. In the
single-cut option, we would therefore implement the cut that was generated by the
present example, since it has a larger violation than either of the cuts generated
in Example 1. In the multiple-cut implementation, we would append all of these
generated cuts to the current RLT-1 relaxation before returning to re-solve the next
relaxation. �

5. Computational results

To gauge the effectiveness of the proposed class of SDP cuts in solving Problem
QP, we first conducted an experiment to evaluate the relative performance of the
various cut generation strategies in enhancing the lower bound derived by RLT-
1(QP) at the root node within a branch-and-bound framework. The first strategy,
which serves as a baseline case, uses a single cut per iteration derived from the mat-
rix X̂ using no permutations. The remaining six strategies were composed by using
each combination of the two matrix types (regular and augmented) with the three
permutation types described in Remark 3 (no permutation, full permutation, and
diagonal sort). These strategies are summarized in Table I. Since some preliminary
computations indicated that the single cut approach was dominated by the multiple
cut implementation, we consider the single cut strategy only in the baseline case.
In addition to the stopping criteria mentioned in Section 3, we also limited each of
the strategies to 60 s of CPU time per problem. (All computations were executed
on a SUN Ultra-1 workstation, with CPLEX 6.5 being used to solve the generated
LP relaxations.)

The sizes of the test problems range from 10 variables to 100, by increments of
10. For each problem, the objective coefficients were generated uniformly on the
interval [0, 10]. The objective coefficients Cii of the terms x2

i were always taken
to be positive, while the coefficients Cij of the terms xixj were permitted to be
positive or negative. In order to vary the problem structure for a given size, the pro-
portion of positive Cij coefficients was varied through four values (0.1, 0.33, 0.66,

252 SHERALI AND FRATICELLI

Table I. Summary of evaluated strategies.

Strategy Number of cuts Matrix type Permutation strategy

1 Single Regular None

2 Multiple Regular None

3 Multiple Regular Full

4 Multiple Regular Diagonal sort

5 Multiple Augmented None

6 Multiple Augmented Full

7 Multiple Augmented Diagonal sort

0.9), and four problems were generated for each such value, creating a total of 16
problems for each problem size. We obtained a lower bound for each of these 160
problems using each of the seven proposed strategies. The data are summarized in
Table II. For each problem, the SDP cut-enhanced bounds were all tighter than the
RLT-1 bound, and the improvement was most pronounced with higher proportions
of positive Cij coefficients and smaller problem sizes. For instance, for the (four)
10-variable problems having 90% of the Cij coefficients positive, the best SDP cut-
enhanced bound improved the RLT-1 bound by an average of 65%; however, for
the 100-variable problems having 10% of the Cij coefficients positive, the SDP cut-
enhanced bound only improved the RLT-1 bound by an average of 1.35%. In order
to assess the relative performances of the different cut generation strategies, we
ranked these methods for each problem size with respect to the bound obtained at
the root node, as well as with respect to the CPU time required. For each problem,
we computed the best (greatest) lower bound and the best (smallest) CPU time,
and then calculated the percentage amount by which each method deviated from
the best bound and time for the given problem. Since we have 16 problems of
each size being solved using each of the seven strategies, this yields a total of 112
data points for each value of n. These data points pertaining to the bound and time
deviations were ranked separately in increasing order for each value of n. In the
case of ties, average ranks were assigned so that the sum of the ranks for each n

equals
∑112

i=1 i = 6328. Tables III and IV present the rank-sums for each strategy
for each value of n, as well as over the ten problem sizes, for the two respective
criteria: lower bounds and CPU times.

The results indicate that the baseline strategy provides significantly worse
bounds than its more sophisticated counterparts, but it has a slightly better than
average performance with respect to computational time. When used with the reg-
ular matrix, the full permutation strategy provides a distinctly better bound than
the non-permutation and diagonal-sort strategies, and this trend occurs across all
problem sizes. Both permutation strategies (full or diagonal sort) provide a tighter
lower bound than the non-permutation strategy when used in combination with
the regular matrix, but the effect is less clear when used in combination with the

A NEW CLASS OF SEMIDEFINITE CUTS 253

Table II. Average percentage improvement of the best SDP cut-enhanced bound over the RLT-1
bound.

Proportion Number of Variables

of Cij > 0 10 20 30 40 50 60 70 80 90 100

0.1 45.63 34.76 25.01 15.94 11.50 7.40 5.23 3.41 1.28 1.35

0.33 56.72 43.86 29.46 21.48 14.13 10.25 5.69 4.18 2.38 1.43

0.66 59.30 55.44 46.18 35.40 24.20 19.94 14.37 10.25 7.34 5.85

0.9 65.18 64.28 59.69 58.10 52.38 44.76 39.61 33.02 28.11 19.14

Table III. Sum of lower bound rankings.

Strategy (as defined in Table 1)

n 1 2 3 4 5 6 7

10 1252 1011.5 798.5 803 1070.5 798 594.5

20 1290.5 1077 305 541.5 1125 945 1044

30 1153 895.5 293.5 661 936.5 1358 1030.5

40 1125 978 627 875 625 1410 688

50 1113.5 1086.5 735.5 992.5 673.5 1014 712.5

60 1165 1079 798.5 941.5 803.5 664 876.5

70 1124.5 1058 987.5 1013.5 729 654 761.5

80 1163 1100 1100 1100 633 673.5 558.5

90 1090.5 1071.5 1071.5 1071.5 730 502 791

100 1078.5 1099 1045 1068.5 747.5 487.5 802

Total 11555.5 10456 7762 9068 8073.5 8506 7859

Table IV. Sum of CPU time rankings.

Strategy (as defined in Table 1)

n 1 2 3 4 5 6 7

10 869 759 1108 930 415 1269.5 977.5

20 636 732 1225.5 1067.5 467.5 1478.5 721

30 869 853 1227 1172 716.5 799.5 691

40 1014 864 1099 1132 823 739 657

50 913 807 1128 1325 590 891.5 673.5

60 928.5 1026 992 1180 496 1149.5 556

70 1233 875 874 1175 559.5 936.5 675

80 579.5 818.5 1617 934 369 1215 795

90 752 934 944.5 1137.5 510 1254 796

100 985 1023.5 892.5 1101 405 1181.5 739.5

Total 8779 8692 11107.5 11154 5351.5 10914.5 7281.5

254 SHERALI AND FRATICELLI

Table V. h-Statistic for the Kruskal–Wallis test.

h-Statistic

n Lower bound CPU time

10 17.11 26.23

20 43.83 46.55

30 42.49 16.08

40 30.37 11.76

50 12.76 23.34

60 10.65 26.5

70 12.13 21.07

80 25.38 60.25

90 19.18 21.90

100 19.19 24.47

augmented matrix strategy. There are several notable cases where the permutation
strategy does not tighten the bounds obtained from the non-permuted method. In
general, the augmented matrix strategy provides an improvement in bounds as
compared to the regular matrix strategy, particularly as problem size increases.
Overall the rankings indicate that Strategies 3 and 7 provide the best lower bounds,
although Strategies 4, 5, and 6 are also competitive. Note that Strategy 3 performs
better for smaller problems, while Strategies 5, 6, and 7 tend to perform better
as the problem size increases. From Table IV, we see that, in general, the methods
using the augmented matrix tend to require less computational time, with Strategies
5 and 7 emerging as clearly more time-efficient. Based upon the rankings shown in
Tables III and IV, it appears that Strategy 7 provides desirable results in terms
of both the quality of the lower bound obtained and the amount of CPU time
consumed. In particular, it seems promising that Strategy 7 also performs well in
both categories as problem size increases.

In order to determine whether or not the differences in the strategy rankings
were significant, we performed a Kruskal–Wallis (rank-sum) test on the data for
each n for the seven strategies. Table V indicates that the CPU times were signific-
antly different at the 5% level

(
h > χ2

0.05,6 = 12.592
)

for each problem size other
than for n = 40, and that the lower bounds were significantly different for all sizes
except for n = 60 and n = 70. We performed an additional Kruskal–Wallis test
by analyzing the combined data from all problem sizes. That is, we ranked each
of the percentage deviations from 1 through 1120 (= 160 × 7), and performed
the Kruskal–Wallis test using a sample size equal to 160 for each strategy. The
test statistics for the lower bounds and CPU times were 66.77 and 119.9, respect-
ively, which were much greater than χ2

0.05,6 = 12.592, indicating that there were
significant differences in the performance of the seven strategies.

A NEW CLASS OF SEMIDEFINITE CUTS 255

Table VI. Number of problems for which the best lower bounds and CPU times were
achieved for each strategy.

Strategy (as defined in Table 1)

1 2 3 4 5 6 7

Lower bound 12 16 46 27 48 67 49

CPU time 18 9 1 3 83 26 22

As final comparative evidence, we directly display in Table VI the number
of problems (out of 160) for which each strategy obtained the best lower bound
and CPU time. The strategies that use the augmented matrix have the largest pro-
portion of best lower bounds and best CPU times. Of the strategies based on the
regular matrix, the ones that employed the full permutation and the diagonal sort
techniques performed significantly better than the one that used no permutation.

Based upon this information, we narrowed our study to exploring the perform-
ance of using Strategies 3, 4, 5, 6, and 7 to generate SDP cuts wihtin a branch-
and-bound framework. As a benchmark in this comparison, we also implemented
the RLT-1 strategy without any cutting planes for computing lower bounds. In
order to obtain the RLT representation for the current branch-and-bound node, we
augment (1.2) with the constraints obtained by multiplying the bound-factors pair-
wise. Note that we only include these bound-factor product constraints of Sherali
and Tuncbilek (1992) when the corresponding bounds are tighter than the implied
bounds of 0 and 1. For each of the Strategies 3, 4, 5, 6, and 7, we also include the
corresponding SDP cuts that were generated at the nodes on the chain connecting
the current node to the root node in the enumeration tree. These cuts are likely
to be most effective for the current node subproblem, although the cuts generated
elsewhere in the tree are also valid. (In case this number exceeds the maximum
allowable number of implemented cuts, we overwrite the cuts that were generated
the earliest.) Since we have linear constraints, the LP solution for each node sub-
problem also provides an upper bound. At each stage of the branch-and-bound
scheme, we select nodes based on the least lower bound rule. For the partitioning
strategy, we select a branching variable, xp, as given by

p ∈ argmaxi=1,...,n{δi = |
∑
j

Cij (x̂i x̂j − X̂ij)|},

and we split the current interval [1p, up] at the value x̃p in order to derive two
children nodes, where

x̃p =
{

x̂p, if min {x̂p − 1p, up − x̂p} ≥ 0.1(up − 1p)
1p+up

2 , otherwise.

This induces convergence to a global optimum (see Sherali and Tuncbilek, 1992).
In our experimental analysis, we fathomed nodes when the lower bound exceeded

256 SHERALI AND FRATICELLI

(1−ε)zupper, where zupper is the best-known solution value. In our computations, we
used ε = 0.0001 for the 10- and 20-variable problems, and we used ε = 0.01 for
the 30-variable problems. Furthermore, we permitted a maximum of 10,000 nodes
for the branch-and-bound routine when using RLT alone, and a maximum of 1000
nodes for the SDP cut-enhanced procedures. We also limited a maximum of 100
cuts to be generated per iteration, and we limited such sequential rounds of cuts per
node to either one or five (as specified). The maximum number of stored cuts was
taken as three times the maximum number of cuts that could be generated at any
given node (i.e., 300 for the one-round-of-cuts limit and 1500 for the five-rounds-
of-cuts case).

Tables VII–X display the results obtained for this branch-and-bound experi-
mentation. Note that in all of these tables, the SDP cut strategies are numbered
according to the order shown in Table I, and the baseline RLT strategy using no
SDP cuts is referred to simply as RLT. Table VII presents the results obtained
for the 10-variable problems, and it shows that for nearly every implementation
strategy, the SDP cuts provide a significant improvement in the performance of
the branch-and-bound algorithm over that using the RLT-1 relaxations alone. The
SDP cuts greatly reduce the number of nodes generated as might be expected,
but also substantially reduce the overall computational effort. Within the SDP cut-
enhanced strategies, using five rounds of SDP cuts per node significantly reduces
the number of nodes enumerated as compared with using a single round of SDP
cuts; however, the computational time is not consistently reduced. In general, using
five founds of cuts proves most valuable for the relatively more difficult problem
instances (lower proportions of positive Cij coefficients), and it does not appear to
work well in conjunction with the no permutation strategy. Based upon the results
from the 10-variable problems, it was evident that Strategy 5 (augmented matrix,
no permutation) would not remain competitive for the more difficult problems, and
Strategy 5 was dropped from consideration for the remaining analysis.

The results for the 20-variable problems are presented in Tables VIII and IX.
Table VIII displays the average time and number of nodes for the various prob-
lem types and implementation strategies. Note that in contrast to the results for
the 10-variable problems, several problems were not solved to optimality within
the allowable number of nodes. In such cases when the gap between the best-
known solution and least lower bound did not fall below 0.01%, we recorded
the percentage gap at termination, and we summarize these results in Table IX.
Note that although several SDP cut strategies do not significantly decrease the
computational effort, they do significantly tighten the optimality gap. Similarly, the
use of five rounds of cuts generally provides better results than one round of cuts
across nearly all strategies, either by tightening the optimality gap or by decreasing
computational effort. The striking result in Table IX is that one strategy, Strategy
4 (regular matrix, diagonal sort) used in combination with five rounds of cuts,
obtained the optimal solution (within the allowable number of nodes) for every
problem. Although Strategy 7 (augmented matrix, diagonal sort) with five rounds

A NEW CLASS OF SEMIDEFINITE CUTS 257

Table VII. Average computation time (in seconds) and average number of nodes for problems
of size (n = 10).

Proportion of positive Cij coefficients

Strategy Rounds 0.1 0.33 0.66 0.9

of cuts Time Nodes Time Nodes Time Nodes Time Nodes

RLT 0 482.41 5657.5 65.84 1006.5 10.95 239.5 0.74 27

3 1 152.24 339 24.15 121.5 3.42 40 0.40 11

5 135.90 92 32.79 44 4.55 17.5 0.79 7

4 1 88.16 195.5 22.77 118 4.00 40.5 0.45 11

5 62.69 40.5 21.84 34.5 3.94 16.5 0.73 7.75

5 1 232.89 422 39.62 162.5 5.89 43.5 0.65 12

5 419.18 205 109.76 96 9.21 23.5 0.70 3.5

6 1 187.61 360.5 31.03 127 7.84 51 0.65 12.5

5 160.80 95.5 33.79 41.5 5.44 13.5 0.66 3.5

7 1 69.43 117 24.46 87 4.53 28.5 0.71 10.5

5 52.76 32 29.80 26 4.21 9 0.81 3.5

Table VIII. Average computation time (in seconds) and average number of nodes for problems of
size (n = 20).

Proportion of positive Cij coefficients

Strategy Rounds 0.1 0.33 0.66 0.9

of cuts Time Nodes Time Nodes Time Nodes Time Nodes

RLT 0 6485.25 10001 3917.5 7133.5 86.02 371.5 5.91 51.5

3 1 5256 978.5 1304.75 426 25.31 61 3.44 22

5 5695.75 534 887.75 130 25.04 22.5 3.83 9.5

4 1 6025.25 990.5 1162.25 367.5 24.82 60 4.11 27

5 2775.25 323.5 638.75 96 28.34 24.5 3.37 9.5

6 1 5604 1001 2509.5 723.5 44.76 75 5.05 20

5 10414.5 922 2625 311 95.64 26.5 4.93 7

7 1 6683.75 1001 1910 447 52.26 46 4.81 19.5

5 6478.75 503.5 1450.25 157.5 79.77 21.5 7.78 8

of cuts also obtained the global optimum for all problems except one, it did not
perform as well with respect to computational effort. Note that Strategy 4, with
five rounds of cuts, dominated the other strategies in terms of both the average
number of nodes enumerated and the average computational effort, particularly for
the more difficult set of problems.

Based upon the results obtained for the 20-variable problems, we used only one
SDP cut strategy, Strategy 4 with five rounds of cuts, to solve the 30-variable prob-
lems. The results comparing this strategy with the basic RLT scheme are shown
in Table X. For the RLT bounding strategy, seven problems could not be solved to

258 SHERALI AND FRATICELLI

Table IX. Average percentage optimality gap at termination
for problems of size (n = 20).

Proportion of positive Cij coefficients

Strategy Rounds of cuts 0.1 0.33 0.66 0.9

RLT 0 7.07 0.78 0 0

3 1 2.02 0 0 0

5 0.17 0 0 0

4 1 1.26 0 0 0

5 0 0 0 0

6 1 5.71 0.02 0 0

5 2.01 0 0 0

7 1 2.71 0 0 0

5 0.06 0 0 0

Table X. Average results for problems of size (n = 30).

Proportion of Time Nodes % Gap

Cij > 0 RLT SDP Cuts RLT SDP Cuts RLT SDP Cuts

0.1 20574.5 12237 10001 499.5 9.50 0.95

0.33 17640.5 8554 9613 437.5 4.7 0

0.66 1559.75 380 1370.5 65.5 0 0

0.9 125.75 58 209.5 25 0 0

optimality (using a 1 tolerance) within the 10000 node limit, while the SDP cut-
enhanced strategy failed to solve only one problem to global optimality within 1000
nodes. Furthermore, the SDP cuts drastically decrease the average computational
effort as well as the number of nodes enumerated across all problem types. The
overall results appear to indicate that the SDP cuts significantly decrease the com-
putational effort and the number of nodes required to solve this class of problems
to optimality. Moreover, this relative improvement becomes more pronounced as
the degree of difficulty of the problem increases (larger n, smaller proportion of
positive Cij coefficient).

6. Conclusions and extensions

In this paper, we have explored connections between semidefinite programming
(SDP) and the Reformulation-Linearization Technique (RLT), and have used this
insight to develop a new class of semidefinite cuts to enhance RLT relaxations.
This concept has been illustrated on a set of problems involving the minimization
of a nonconvex quadratic function over a simplex. The process of closing the gap
between a first-level RLT relaxation and a semidefinite relaxation for this problem
was shown to yield an equivalent semi-infinite linear program in which the set of

A NEW CLASS OF SEMIDEFINITE CUTS 259

infinite constraints comprised a particular type of RLT constraints that we called
semidefinite cuts (or SDP cuts). Based on this representation, a relaxation and row
generation scheme was devised, leading to a polynomial-time SDP cut generation
procedure. Although this cut generation process is quite efficient in practice, its
worst-case complexity of O(n3) could be an obstacle for large-scale problems,
particularly if the matrix of second-order variables turns out to be dense. Several cut
generation strategies, based on using the original or augmented matrix of second-
order variables, in natural or specially permuted form, were devised and tested.
The SDP cut-enhanced relaxations not only provided significantly tighter lower
bounds, but when embedded within a branch-and-bound framework to determine
a global optimal solution, resulted in a substantial decrease in both the number of
nodes enumerated and in the overall computational effort, particularly for more
challenging problem instances. Of the proposed implementation strategies, the
use of multiple cuts clearly dominated the single-cut approach, and the permuta-
tion and augmented matrix implementations also provided improved results for
some problems. For the most challenging problems, the best combined strategy by
far used five founds of SDP cuts at each node, generated via the regular matrix
of second-order RLT variables, rearranged using the diagonal sort permutation
strategy.

Observe that the proposed class of SDP cuts can be used in any context where
RLT is applied. This includes problems having polynomial objective and constraint
functions, factorable programming problems, or even linear mixed-integer pro-
gramming problems. In all such cases, SDP cuts can be generated based on the
(regular or augmented) matrix of second-order RLT variables. For example, con-
sider an RLT relaxation that includes fourth-order RLT variables Xijk1 representing
the product term xixjxkx1,∀1 ≤ i ≤ j ≤ k ≤ 1 ≤ n. Let X(2) denote the vector
comprising all distinct(

n+ 1
2

)

second-order RLT variables, and let X(4) be a matrix comprised of the fourth-order
RLT variables structured in the form X(4) ≡ [X(2)X

T
(2)]L. Since X(4) must be PSD,

we can impose a class of SDP cuts in the same spirit as (2.5d) in the form

αTX(4)α ≡ [(αTX(2))
2]L ≥ 0∀α ∈ R

 n+ 1

2

� ‖α‖ = 1. (6.14)

Then, given any X̂(4) as part of a solution to the RLT relaxation, we can use the
techniques of Section 3 identically to derive SDP cuts of the type (6.14) involving
the higher dimensional variables.

We also observe that there is another viewpoint that can be adopted in this
context by defining Aijk1 = αi αj αk α1, and imposing the semidefinite constraint
A ·X ≥ 0 for any vector α ∈ Rn, where A ·X = ∑

i

∑
j

∑
k

∑
1 Aijk1Xijk1, simply

260 SHERALI AND FRATICELLI

because

A · X =
[(
αT x

)4
]
L
.

This leads to the class of RLT constraints

[(αT x)4]L ≥ 0,∀α ∈ Rn � ‖α‖ = 1. (6.15)

However, in this case, we would need to devise a procedure for generating violated
members of the constraints (6.15), if any exist, via a separation routine or a cutting
plane-generation process. The extension of cuts of type (6.14) or (6.15) to RLT
variables of general even order is evident. We propose the task of investigating the
generation of such cuts and testing their implementation for enhancing higher order
RLT relaxations for future research.

References

Alizadeh, F. (1995) Interior Point Methods in Semidefinite Programming with Applications to
Combinatorial Optimization. SIAM Journal of Optimization 5(1), 13–51.

Audet, C., Hansen, P. Jaumard, B. and Savard, G. (2000) Branch and Cut Algorithm for Non-
convex Quadratically Constrained Quadratic Programming. Mathematical Programming 87(1),
131–152.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M., (1993) Nonlinear Programming Theory and
Applications, Wiley, New York, NY, second edition.

Bertsimas, D. and Ye, Y. (1998) Semidefinite Relaxations, Multivariate Normal Distributions and Or-
der Statistics. In: D.-Z. Du and P. M. Pardalos (eds.): Handbook of Combinatorial Optimization,
Vol. 3. Kluwer Academic Publishers, pp. 1–19.

Burer, S. and Monteiro, R. (1998) A Nonlinear Programming Algorithm for Solving Semidefinite
Programs via Low-rank Factorization. Presented at the ISMP Conference, Atlanta, GA.

Goemans, M. and Williamson, D. (1995), Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming Journal of the Association for
Computational Machinery 42(6), 1115–1145.

Nowak, I. (1998) A Global Optimality Criterion for Non-Convex Quadratic Programming Over
a Simplex . Pre-Print 98–17, Humboldt University, Berlin. Available online at http://www-
iam.mathematik.hu-berlin.de/ivo/ivopages/work.html.

Paige, C.C. (1972) Computational Variants of the Lanczos Method for the Eigen-problems. Journal
of the Institute of Mathematics and Its Applications 10, 373–381.

Ramana, M. and Goldman, A. J. (1995), Some Geometric Results in Semidefinite Programming.
Journal of Global Optimization 7, 33–50.

Ramana, M. and Pardalos, P. M. (1996) Semidefinite Programming. In: T. Terlaky (ed.): Interior
Point Methods of Mathematical Programming. Kluwer Academic Publishers, Dordrecht, pp.
369–398.

Sherali, H. D. and Adams, W. P. (1999), A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Boston, MA: Kluwer Academic Publishing.

Sherali, H. D. and Tuncbilek, C. H. (1992), A Global Optimization Algorithm for Polynomial
Programming PRoblems Using a Reformulation-Linearization Technique. Journal of Global
Optimization 2, 101–112.

Sherali, H. D. and Tuncbilek, C. H. (1997), Reformulation-Linearization/Convexification Relaxa-
tions for Univariate and Multivariate Polynomial Programming Problems. Operations Research
Letters 21(1), 1–10.

A NEW CLASS OF SEMIDEFINITE CUTS 261

Sherali, H. D. and Wang, H. (2001), Global Optimization of Nonconvex Factorable Programming
Problems. Mathematical Programming 89(3), 459–478.

Shor, N. Z. (1998), Nondifferentiable Optimization and Polynomial Problems. Boston, MA: Kluwer
Academic Publishing.

Todd, M. J. (1998), Semidefinite Programming Applications, Duality, and Interior-Point Methods.
Presented at the Fall INFORMS meeting, Seattle, WA. Also available on the World Wide Web at
http://www.orie.cornell.edu/mike-todd/todd.html.

Vandenbergh, L. and Boyd, S. (1996), Semidefinite Programming. SIAM Review 38(1), 49–95.
Vanderbei, R.J. and Benson, H. Y. (2000), On Formulating Semidefinite Programming Problems as

Smooth Convex Nonlinear Optimization Problems. Working paper, Department of Operations
Research and Financial Engineering, Princeton University, Princeton, NJ.

Wolkowicz, H., Saigal, R. and Vandenbergh, L. 2000, Handbook of Semidefinite Progamming:
Theory and Algorithms, and Applications. Boston, MA: Kluwer Academic Publishers.

